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Chapter IV. Determinants.

IV.1 The Permutation Group Sn.

The permutation group Sn consists of all bijections σ : [1, n] → [1, n] where [1, n] =
{1, ..., n}, with composition of operators

σ1 ◦ σ2(k) = σ1(σ2(k)) for 1 ≤ k ≤ n

as the group operation. The identity element e is the identity map id[1,n] such that
e(k) = k, for all k ∈ [1, n]. We recall that a group is any set G equipped with a binary
operation (∗) satisfying the following axioms:

1. Associativity: x ∗ (y ∗ z) = (x ∗ y) ∗ z;

2. Identity element: There is an e ∈ G such that e ∗ x = x = x ∗ e, for all x ∈ G;

3. Inverses: Every x ∈ G has a “two-sided inverse,” an element x−1 ∈ G such that
x−1 ∗ x = x ∗ x−1 = e.

We do not assume that the system (G, ∗) is commutative, with x∗y = y∗x; a group with
this extra property is a commutative group, also referred to as an abelian group. Here
are some examples of familiar groups.

1. The integers (Z, +) become a commutative group when equipped with (+) as the
group operation; multiplication (·) does not make Z a group. (Why?)

2. Any vector space equipped with its (+) operation is a commutatve group, for
instance (Kn, +);

3. The set (C×, ·) = C ∼ {0} of nonzero complex numbers equipped with complex
multiplication (·) is a commutative group; so is the subset S1 = {z ∈ C : |z| = 1}
(unit circle in the complex plane) because |z|, |w| = 1 ⇒ |zw| = |z| · |w| = 1 and
|1/z| = 1/|z| = 1.

4. General Linear Group. The set GL(n, K) = {A ∈ M(n, K) : det(A) ̸= 0} of
invertible n × n matrices is a group when equipped with matrix multiply as the
group operation. It is noncommutative when n ≥ 2. Validity of the group axioms
for (GL, · ) follows because

det(AB) = det(A)·det(B) det(I) = 1 det(A−1) =
1

det(A)
,

and a matrix A has a two-sided inverse ⇔ det(A) ̸= 0.
Special Linear Group. These properties of the determinant imply that the
subset SL(n, K) = {A ∈ M(n, K) : det(A) = 1} equipped with matrix multiply is
also a (noncommutative) group;

5. The set of permutations (Per(X), ◦), the bijections on a set X of n distinct objects,
is also a group when equipped with composition (◦) as its product operation. No
matter what the nature of the objects being permuted, we can restrict attention to
permutations of the set of integers [1, n] by labeling the original objects, and then
we have the group Sn.
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Permuations. The simplest permutations are the k-cycles.

1.1. Definition. An ordered list (i1, ...., ik) of k distinct indices in [1, n] = {1, ..., n}
determines a k-cycle in Sn, the permutation that acts in the following way on the set
X = [1, n].

(29) σ maps

{

i1 → i2 → . . . → ik → i1 (a one-step “cyclic shift” of list entries)
j → j for all j not in the list {i1, . . . , ik}

A 1-cycle (k) is just the identity map idX so we seldom indicate them explicitly, though
it is permissible and sometimes quite useful to do so. The support of a k-cycle is the
set of entries supp(σ) = {i1, . . . , ik}, in no particular order. The support of a one-cycle
(k) is the one-point set {k}.

The order of the entries in the symbol σ = (i1, . . . , ik) matters, but cycle notation is
ambiguous: k different symbols

(i1, . . . , ik) = (i2, . . . , ik, i1) = (i3, . . . , ik, i1, i2) = . . . = (ik, i1, . . . , ik−1)

obtained by “cyclic shifts” of the list entries in σ; all describe the same operation in
Sn. Thus a k-cycle might best be descibed by a “cyclic list” of the sort shown below,
rather than a linearly ordered list, but such diagrams are a bit cumbersome for the
printed page. If we change the cyclic order of the indices we get a new operator. Thus
(1, 2, 3) = (2, 3, 1) = (3, 1, 2) ̸= (1, 3, 2) because (1, 2, 3) sends 1 → 2 while (1, 3, 2) sends
1 → 3.

Figure 4.1. Action of the k-cycle σ = (i1, , . . . , ik) on X = {1, 2, . . . n}. Points ℓ not in
the “support set” supp(σ) = {i1, . . . , ik} remain fixed; those in the support set are shifted
one step clockwise in this cyclically ordered list. This σ is a “1-shift.” (A 2-shift would
move points 2 steps in the cyclic order, sending i1 → i3 to . . . etc.

One (cumbersome) way to describe general elements σ ∈ Sn employs a data arrray
to show where each k ∈ [1, n] ends up:

σ =

(

1 2 3 ... n
j1 j2 j3 ... jn

)

More efficient notation is afforded by the fact that every permutation σ can be uniquely
written as a product of cycles with disjoint supports, which means that the factors
commute.

1.2. Exercise. If σ = (i1, ..., ir), τ = (j1, .., js) act on disjoint sets of indices, show that
these operators commute. This is no longer true if the sets of indices overlap. Check
this by computing the effect of the following products στ(k) = σ(τ(k)) of permutations
in S5.

1. (1, 2, 3)(2, 4);
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2. (2, 4)(1, 2, 3).

Is either product a cycle?

Thus the order of factors in a product of cycles is irrelevant if the cycles are disjoint.
The product of two cycles στ = σ ◦ τ is a composition of operators, so the action of

στ = σ ◦ τ on an element k ∈ [1, n] is evaluated by feeding k into the product from the
right as below. Taking σ = (1, 2), and τ = (1, 2, 3) in S5 we have

στ : k
(1,2,3)−→ (1, 2, 3)·k (1,2)−→ (1, 2)·((1, 2, 3)·k) = ((1, 2)(1, 2, 3)·k)

To determine the net effect we track what happens to each k:

Action Net Effect

1
(1,2,3)−→ 2

(1,2,3)−→ 1 1 → 1
2 −→ 3 −→ 3 2 → 3
3 −→ 1 −→ 2 3 → 2
4 −→ 4 −→ 4 4 → 4
5 −→ 5 −→ 5 5 → 5

Thus the product (1, 2)(1, 2, 3) is equal to (2, 3) = (1)(2, 3)(4)(5), when we include re-
dundant 1-cycles. On the other hand (1, 2, 3)(1, 2) = (1, 3) which shows that cycles need
not commute if their supports overlap. As another example we have

(1, 2, 3, 4)2 = (1, 3)(2, 4)

which shows that a power σk of a cycle need not be a cycle, although it is a product of
disjoint cycles. We cite without proof the fundamental cycle decomposition theorem.

1.3. Theorem (Cycle Decomposition of Permutations). Every σ ∈ Sn is a product
of disjoint cycles. This decomposition is unique (up to order of the commuting factors)
if we include the 1-cycles needed to account for all indices k ∈ [1, n].

1.4. Exercise. Write

σ =

(

1 2 3 4 5 6
2 4 6 5 1 3

)

as a product of disjoint commuting cycles.
Hint: Start by tracking 1 → 2 → 4 → . . . until a cycle is completed; then feed σ the
first integer not included in the previous cycle, etc.

1.5. Exercise. Evaluate the net action of the following products of cycles

1. (1, 2)(1, 3) in S3;

2. (1, 2)(1, 3) in S6 ;

3. (1, 2)(1, 2, 3, 4, 5) in S5;

4. (1, 2, 3, 4, 5)(1, 2) in S5;

5. (1, 2)2 in S5;

6. (1, 2, 3)2 in S5.

Write each as a product of disjoint cycles.

1.6. Exercise. Determine the inverses σ−1 of the following elements in S5

1. (1, 2);

2. (1, 2, 3);

3. Any 2-cycle (i1, i2) with i1 ̸= i2;

4. Any k-cycle (i1, ..., ik).

1.7. Exercise. Evaluate the following products in Sn as products of disjoint cycles

1. (1, 5)(1, 4)(1, 3)(1, 2);

70



2. (1, 2)(1, 3)(1, 4)(1, 5);

3. (1, k)(1, 2, ..., k − 1).

1.8. Exercise. The order o(σ) of a permutation σ is the smallest integer m ≥ 1 such
that σm = σ ·. . .·σ = e.

1. Prove that every k-cycle has order o(σ) = k.

2. Verify that the rth power σr of a k-cycle σ = (i1, . . . , ik) is an “r-shift” that moves
every entry clockwise r steps in the cyclically ordered list of Figure 4.1.

3. If σ is a 6-cycle its square σ2 = σ ◦ σ is a cyclic 2-shift of the entries (i1, . . . , i6).
What is the order of this element in Sn?

Hint: By relabeling, it suffices to consider the standard 6-cycle (1, 2, 3, 4, 5, 6) in answer-
ing (3.)

The only element in Sn of order 1 is the identity e; two-cycles have order 2. As noted
above, in (2.) the powers σr of a k-cycle need not be cycles (but sometimes they are).

Parity of a Permutation. In a different direction we note that the 2-cycles (i, j)
generate the entire group Sn in the sense that every σ ∈ Sn can be written as a product
σ = τ1 · . . . · τr of 2-cycles. However these factors are not necessarily disjoint and need
not commute, and such decompositions are far from unique since we have, for example,

e = (1, 2)2 = (1, 2)4 = (1, 3)2 etc..

Nevertheless an important aspect of such factorizations is unique, namely its parity

sgn(σ) = (−1)r

where r = #(2-cycles in the factorization σ = τ1, . . . , τr). That means the elements
σ ∈ Sn fall into two disjoint classes: even permutations that can be written as a product
of an even number of 2-cycles, and odd permutations. It is not obvious that all 2-cycle
decompositions of a given permutation have the same parity. We prove that next, and
then show how to compute sgn(σ) effectively.

We first observe that a decomposition into 2-cycles always exists. By Theorem 1.3
it suffices to show that any k-cycle can be so decomposed. For 1-cycles this is obvious
since (k) = e = (1, 2)·(1, 2). When k > 1 it is easy to check that

(1, 2, ..., k) = (1, k) · . . . · (1, 3)(1, 2)

(with k − 1 factors)

1.9. Exercise. Verify the preceding factorization of the cycle (1, 2, . . . , k). Then by
relabeling deduce that (i1, ..., ik) = (i1, ik)(i1, ik−1) · . . . · (i1, i2) for any k-cycle.
Note: This is an example of “proof by relabeling.”

Once we verify that the parity is well defined, this tell us how to recognize the parity of
any k-cycle

(30) sgn(i1, i2, ..., ik) = (−1)k−1 for all k > 0

1.10. Theorem (Parity). All decompositions σ = τ1 · . . . · τr of a permutation as a
product of 2-cycles have the same parity sgn(σ) = (−1)r.

Proof: The group Sn acts on the space of polynomials K[x] = K[x1, ..., xn] by permuting
the variables

(σ ·f)(x1, ..., xn) = f(xσ(1), ..., xσ(n))
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For instance (1, 2, 3) · f(x1, x2, x3, x4, x5) = f(x2, x3, x1, x4, x5). This is a “covariant
group action” in the sense that

(στ)·f = σ ·(τ ·f) and e·f = f

for all f and all σ, τ ∈ Sn. The notation makes this a bit tricky to prove; one way to
convince yourself is to write

σ ·(τ ·f)(x1, . . . , xn) = τ ·f(xσ(1), . . . , xσ(n))

= τ ·f(w1, . . . , wn)|
w1=xσ(1),...,wn=xσ(n)

= f(wτ(1), . . . , wτ(n))|wk=xσ(k)

= f(xσ(τ(1)), . . . , xσ(τ(n)))

= f(x(στ)(1), . . . , x(στ)(n)) = (στ)·f(x1, . . . , xn)

Now consider the polynomial in n unknowns φ ∈ K[x1, ..., xn] given by

φ(x1, ..., xn) =
∏

i<j

(xi − xj).

We claim that σ ·φ = (−1)·φ for any 2-cycle σ = (i, j); by “covariance” it follows that
σ ·φ = (−1)rφ if σ is a product τ1 · . . . · τr of r two-cycles. Since the definition of σ ·φ
makes no reference to 2-cycle decompositions we will conclude that (−1)r must be the
same for all such decompositions of σ, completing the proof.

To show that τ ·φ = (−1)φ for a 2-cycle (i, j) we may assume i < j. Note that the
terms xk − xℓ (k < ℓ) not involving i or j are unaffected when we switch xi ↔ xj . The
remaining terms are of three types.

Case 1: Terms involving both i and j. The only such term is xi − xj which becomes

σ ·(xi − xj) = xj − xi = (−1)(xi − xj) ,

suffering a change of sign.

Case 2: Terms involving only i. The possibilities (for k ̸= j) are listed below

xk − xi xi − xk xi − xk

Terms 1 ≤ k < i i < k < j j < leqk ≤ n

#(Terms) i − 1 j − i − 1 n − j

Effect of No change xi − xk → xj − xk No change
xi ↔ xj (since i < j < k) = (−1)(xk − xj) (since i < j < k)

on sign of term

Case 3: Terms involving only j. These are (for k ̸= i).

xk − xj xk − xj xj − xk

Terms 1 ≤ k < i i < k < j j < k ≤ n

#(Terms) j − 1 j − i − 1 n − j

Effect of No change xk − xj → xk − xi

xi ↔ xj (since i < j < k) = (−1)(xi − xk) No change
on sign of term
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The effect of switching xi ↔ xj is to permute the terms in
∏

k<l(xk − xl) changing
the sign of some, so the product gets multiplied by +1 or −1. Counting the number of
sign changes in all cases we see that

(−1)#(changes) = (−1)1+even = −1

as claimed. !

1.11. Corollary. The parity map sgn : Sn → {±1}, defined by sgn(σ) = (−1)r if σ can
be written as a product of r two-cycles, has the following algebraic properties

1. sgn(e) = +1;

2. sgn(στ) = sgn(σ) · sgn(τ);

3. sgn(σ−1) = (sgn(σ))
−1

= sgn(σ) (since sgn = ±1).

Proof: Obviously sgn(e) = 1 since we may write e = (1, 2)2. If σ = c1 · . . . · cr and
τ = c′1 · . . . · c′s where ci, c′j are 2-cycles, then στ = c1 · . . . · crc′1 · . . . · c′s is a product of
r + s cycles, proving (2.). The third property follows because

1 = sgn(e) = sgn(σσ−1) = sgn(σ) · sgn(σ−1)

since the only values of sgn are ±1. !

IV.2 Determinants.
The previous digression about the permutation group Sn is needed to formulate the
natural definition of det(A) for an n × n matrix A ∈ M(n, K), or of det(T ) for a linear
operator T : V → V on a finite dimensional vector space.

Any discussion that formulates this definition in terms of “expansion by minors” is
confusing the natural definition of det with a commonly use algorithm for computing its
value. Here is the real definition:

2.1. Definition. If A ∈ M(n, K), we define its determinant to be

(31) det(A) =
∑

σ∈Sn

sgn(σ) · a1,σ(1) · . . . · an,σ(n) =
∑

σ∈Sn

sgn(σ) ·
n

∏

i=1

ai,σ(i)

The products in this sum are obtained by taking σ ∈ Sn and using it to select one entry
from each row, taking each entry from a different column. Thus each σ determines a
“template” for selecting matrix entries that are to be multiplied together (the product
then weighted by the signature sgn(σ) of the permutation). The idea is illustrated in
Figure 4.2.

Many properties can be read directly from definition but the all-important multi-
plicative property det(AB) = det(A) ·det(B) is tricky no matter what definition we start
from. We begin with several easy properties:

2.2. Theorem. If A ∈ M(n, K) and c ∈ K we have

1. det(In×n) = 1;

2. det(cA) = cn ·det(A) if A is n × n;

3. det(At) = det(A);

4. When K = C we have det (A) = ( det(A)) where z̄ = the complex conjugate of
z = x + iy.
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Figure 4.2. A permutation σ ∈ Sn determines a “template” for selecting matrix entries
by marking the address (i, σ(i)) – the one in Rowi, Columnσ(i). Each row contains exactly
one marked spot, and likewise for each column.

5. If A is “upper triangular,” so

A =

⎛

⎜

⎝

a11 ∗
. . .

0 ann

⎞

⎟

⎠
,

then det(A) =
∏n

k=1 akk is the product of the diagonal entries.

Proof: Assertions (1.), (2.), (4.) are all trivial; we leave their proof to the reader. In (5.)
the typical product ±a1,σ(1) · . . . · an,σ(n) in the definition of det(A) will equal 0 if any
factor is zero. But unless σ(k) = k for all k, there will be some row such that σ(k) > k
and some other row such that σ(ℓ) < ℓ. The resulting template includes a matrix entry
below the diagonal, making the product for this template zero. The only permutation
contributing a term to the sum (31) is σ = e, and that term is equal to a11 · . . . · ann as
in (5.)

For (3.) we note that

det(At) =
∑

σ∈Sn

sgn(σ)(b1,σ(1) · . . . · bn,σ(n))

if B = At = [bij ]. By definition of At, bij = aji so the typical term becomes

b1,σ(1) ·. . .·bn,σ(n) = aσ(1),1 ·. . .·aσ(n),n

However, we may write aσ(j),j = aσ(j),σ−1(σ(j)) for each j, and then

det(At) =
∑

σ∈Sn

sgn(σ)b1,σ(1) ·. . .·bn,σ(n) =
∑

σ∈Sn

sgn(σ)aσ(1),1 ·. . .·aσ(n),n

Note that
∏

i aσ(i),i =
∏n

i=1 aσ(i),σ−1(σ(i)), so if we replace the dummy index i in the
product with j = σ(i) the product becomes

∏n
j=1 aj,σ−1(j) and

det(At) =
∑

σ∈Sn

sgn(σ) ·
n

∏

j=1

aj,σ−1(j).

Next, write τ = σ−1. The τ run through all of Sn as σ runs through Sn because Sn

is a group. (This is our first encounter with the “group” property of Sn.) Furthermore
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sgn(τ) = sgn(σ−1) so that

det(At) =
∑

τ∈Sn

sgn(τ)·
n

∏

j=1

aj,τ(j) = det(A) !

The following observation will play a pivotal role in further discussion of determinants.

2.3. Lemma. If B is obtained from A by interchanging two rows (or two columns) then

det(B) = (−1) · det(A) .

Proof: We do the case of column interchange. If A = [aij ] then B = [bij ] with bij =
aiτ(j); i.e. Colj(B) = Colτ(j)(A), for 1 ≤ j ≤ n, where τ is the two-cycle τ = (k, ℓ)
that switches the column indices when we interchange Colℓ(A) ↔ Colk(A). Then for any
σ ∈ Sm, we have

b1,σ(1) · . . . · bn,σ(n) = a1,τσ(1) · . . . · an,τσ(n)

But Sn is a group so Snσ = Sn and the elements τσ run through all of Sn as τ runs
through Sn; furthermore, because τ is a 2-cycle we have sgn(τ) = −1 and sgn(τσ) =
sgn(τ)sgn(σ) = (−1)·sgn(σ). Thus

det(B) =
∑

σ∈Sn

sgn(σ) ·
n

∏

i=1

bi,σ(i) =
∑

σ∈Sn

sgn(σ) ·
n

∏

i=1

ai,τσ(i)

=
∑

σ∈Sn

sgn(τ)−1sgn(τσ) ·
n

∏

i=1

ai,τσ(i)

= sgn(τ) ·
∑

µ∈Sn

sgn(µ) ·
n

∏

i=1

ai,µ(i) = (−1) · det(A) !

2.4. Exercise. Use the previous results to show that det(A) = 0 if either:

1. A has two identical rows (or columns);

2. A has a row (or column) consisting entirely of zeros.

Recall the definition of the “elementary row operations” on a matrix A.

• Type I: Ri ↔ Rj : interchange Rowi and Rowj ;

• Type II: Ri → λ · Ri: multiply Rowi by λ (λ ∈ K);

• Type III: Ri → Ri + λRj : Add to Rowi any scalar multiple of a different row Rj

(leaving Rowj unaltered).

The effect of the first two operations on the determinant of a square matrix is easy to
evaluate.

2.5. Exercise. Prove that if B has Ri(B) = λ·Ri(A) with all other rows unchanged,
then det(B) = λ · det(A).

To deal with Type III operations we first observe that the map det : M(n, K) → K is a
multilinear function of the rows or columns of A.
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2.6. Lemma. If the ith row of a matrix A is decomposed as a linear combination
Ri = aR′

i + bR′′

i of two other rows of the same length, then

det(A) =

0

B

B

B

B

B

B

@

R1

...
aR

′

i + bR
′′

i

...
Rn

1

C

C

C

C

C

C

A

= a · det

0

B

B

B

B

B

B

@

R1

...
R

′

i

...
Rn

1

C

C

C

C

C

C

A

+ b · det

0

B

B

B

B

B

B

@

R1

...
R

′′

i

...
Rn

1

C

C

C

C

C

C

A

= a · det(A′) + b · det(A′′)

In other words det(A) is a multilinear function of its rows: If we vary only Ri holding
the other rows fixed, the determinant is a linear function of Ri.

Proof: If R′

i = (x1, . . . , xn) and R′′

i = (y1, . . . , yn), then Aij = axj + byj and

det(A) =
∑

σ∈Sn

sgn(σ) · (a1,σ(1) · . . . · (axσ(i) + byσ(i)) · . . . · an,σ(n))

= a ·
∑

σ∈Sn

sgn(σ) · (a1,σ(1) · . . . · xσ(i) · . . . · an,σ(n))

+ b ·
∑

σ∈Sn

sgn(σ) · (a1,σ(1) · . . . · yσ(i) · . . . · an,σ(n))

= a · det(A′) + b det(A′′)

as claimed. !

2.7. Corollary. If B is obtained from A by a Type III row operation Ri → Ri + cRj

(j ̸= i) then Rowi(B) = Ri + cRj and

det(B) = det

0

B

B

B

B

B

B

B

B

B

B

B

B

@

R1

.

.

.

Ri

.

.

.

Rj

.

.

.

Rn

1

C

C

C

C

C

C

C

C

C

C

C

C

A

+ c · det

0

B

B

B

B

B

B

B

B

B

B

B

B

@

R1

.

.

.

Rj

.

.

.

Rj

.

.

.

Rn

1

C

C

C

C

C

C

C

C

C

C

C

C

A

= det(A) + 0 = det(A)

because the second matrix has a repeated row.

Row Operations, Determinants, and Inverses. Every row operation on
an n×m matrix A can be implemented by multiplying A on the left by a suitable n×n
“elementary matrix” E; the corresponding column operation is achieved by multiplying
A on the right by the transpose Et.

• Type I. (Rowi) → λ · (Rowi): is equivalent to sending A to EIA where

EI =

0

B

B

B

B

B

B

@

1 0
. . .

λ

. . .
0 1

1

C

C

C

C

C

C

A

Obviously det(EI) = λ and

det(EIA) = det(EI) · det(A) = λ · det(A)
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• Type II. (Rowi) ↔ (Rowj): Now the result is achieved using the matrix

EII =

Coli Colj

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0
. . .

0 · · · 1
...

. . .
...

1 · · · 0
. . .

0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Since EII is In×n with two rows interchanged, det(EII) = −1 and

det(EIIA) = (−1) · det(A) = det(EII) · det(A)

• Type III. (Rowi) → (Rowi) + λ(Rowj), with j ̸= i. Assuming i < j, the appro-
priate matrix is

EIII =

Coli Colj
0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0
. . .

1 · · · λ

...
. . .

...

0 · · · 1
. . .

0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and we have det(EIII) = 1. But then, we also have

det(EIIIA) = det(A) = det(EIII) · det(A)

This proves:

2.8. Lemma. If E is any (n × n) elementary matrix then we have

det(EA) = det(E) · det(A)

for any n × n matrix A.

This allows us to compute determinants using row operations, exploiting the fact that
det(A) can be calculated by inspection if A is upper triangular. First observe that the
effect of a sequence of row operations is to map A .→ Em · . . . ·E1 ·A (echelon form), but
then

det(Em · . . . · E1A) = det(Em) · det(Em−1 · . . . · E1 ·A) = (
m
∏

i=1

det(Ei))·det(A)

Thus

det(A) = (
m
∏

i=1

det(Ei)
−1 ) · det(E1 · . . . · EmA)

and calculating det(A) reduces to calculating the upper triangular row reduced form,
whose determinant can be read by inspection. (You also have to keep track of the row
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operations used, and their determinants.)

Computing Inverses. Suitably chosen row operations will put an n × n matrix
into echelon form; if we only allow elementary operations of Type II or Type III we can
achieve nearly the same result, except that the pivot entries contain nonzero scalars λi

rather than “1”s, as shown in Figure 4.3. Next recall that M(n, K) and the space of linear
operators Hom(Kn, Kn) are isomorphic as associative algebras under the correspondence

A .→ LA (LA(x) = A·x = ((n × n)·(n × 1) matrix product) ,

as we showed in the discussion surrounding Exercise 4.12 of Chapter II. That means the
following statements are equivalent.

(32)

1. A matrix inverse A−1 exists in M(n, K);

2. LA : Kn → Kn is an invertible linear operator;

3. ker(LA) = (0);

4. The matrix equation AX = 0 has only the trivial solution X = 0n×1.

We say that a matrix is nonsingular if any of these conditions holds; otherwise it is
singular.

2.9. Exercise. If A, B are square matrices prove that

1. The product AB is singular if at least one of the factors is singular.

2. The product AB is nonsingular if both factors are nonsingular.

With this in mind we can deduce useful facts about matrix inverses from the preceding
discussion of row operations and determinants.

2.10. Proposition. The following statements regarding an n×n matrix are equivalent.

1. det(A) ̸= 0;

2. A has a multiplicative inverse A−1 in M(n, K);

3. The multiplication operator LA : Kn → Kn is an invertible (bijective) linear opera-
tor on coordinate space.

Proof: We already know (2.) ⇔ (3.). Row operations of Type II and III reduce A to one
of the two “modified echelon forms” A′ (see Figure 4.3(a–b)), in which the step corners
contain nonzero scalars λ1, . . . , λr that need not equal 1, and r = rank(A). Obviously
if there are columns that do not meet a step-corner, as in 4.3(a), then the product of
diagonal entries det(A) is zero; at the same time, the matrix equations A′X = 0 and
AX = 0 will have nontrivial solutions, so the left multiplication operator LA : Kn → Kn

fails to be invertible (because ker(LA) ̸= (0)) and a matrix inverse A−1 fails to exist.
The situation in Figure 4.3(b) is better: since Type II and Type III operations can only
change det(A) by a ± sign, det(A) = ± det(A′) = ±

∏n
i=1 λi is nonzero. Concurrently,

AX = 0 has only the trivial solution, LA is an invertible linear operator on Kn, and a
matrix inverse A−1 exists. !

To summarize, we have proved the following result (and a little more).

2.11. Theorem. If A ∈ M(n, K) then A−1 exists if and only if Type II and Type II
row operations yield a modified echelon form that is upper triangular, with all diagonal
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Figure 4.3. Row operations of Type II and III reduce an n × n matrix A to one of the
two “modified echelon forms” A′ shown in 4.3(a)–4.3(b); in both the step corners contain
nonzero scalars λ1, . . . , λr that need not = 1, and r = rank(A) with r = n in 4.3(b).

If there are columns that do not meet a step-corner as in 4.3(a), then some diagonal
entries in in A′ are zero and det(A) = ± det(A′) = 0. In the situation of 4.3(b) det(A) =
± det(A′) = ±(λ1 ·. . .·λn) because Type II and III elementary operations have determinant
= ±1. In this case det(A) is nonzero and its value can be determined by inspection, except
for a (±) sign.

entries nonzero.

Em · . . . · E1A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1 0 ∗
0 λ2

. .
. .

0 0 λn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(λi ̸= 0)

Then the determinant is

det(A) =
m
∏

k=1

det(Ek)−1 ·
n

∏

i=1

λi

The factor
∏n

k=0 det(Ek)−1 attributed to the row operations can only be ±1 since no
Type I operations are involved. On the other hand, if the modified echelon form contains
columns that do not meet a setp corner, then det(A) = 0 and A−1 does not exist.

The basic definition (31) of the determinant is computationally very costly. Below
we will give an algorithm (“expansion by minors”) which is often useful in studying the
algebraic properties of determinants, but it is still pretty costly compared to the row
reduction method developed above. To illustrate:

n = Matrix Size Expansion by Minors Row Reduction

Adds Multiplies Adds Multiplies

2 1 2 1 3
4 23 40 14 23
5 119 205 30 45
10 3.6 × 106 6.2 × 106 285 339

The technique used above also yields a fairly efficient algorithm for computing A−1

(which at the same time determines whether A is in fact invertible). Allowing all three
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types of row operations, an invertible matrix can be driven into its reduced echelon form,
which is just the identity matrix In×n. In this case

(33) Em · . . . · E1 · A = In×n and A−1 = E−1
1 · . . . · E−1

m · In×n

Each inverse E−1
k is easily computed; it is just another elementary matrix of the same

type as Ek. This can be codified as an explicit algorithm:

The Gauss-Seidel Algorithm. Starting with the augmented n× 2n matrix
[A : In×n], perform row operations to put A into “reduced” echelon form
(upper triangular with zeros above all step corners). If rank(A) < n and A
is not invertible this will be evident – not all columns include a step-corner –
and the algorithm reports that det(A) = 0 and A is not invertible. Otherwise,
every column is a pivot column and the reduced echelon form of A is just the
identity matrix. Applying the same operations to the entire augmented matrix
transforms [A : In×n] → [In×n : B] in which B = A−1. (Why?)

Another consequence of the preceding discussion is the very important multiplicative
property of determinants.

2.12. Theorem (Multiplicative Property). If A, B ∈ M(n, K) then

det(AB) = det(A) · det(B)

Proof: If A is singular then AB is singular (Exercise 2.9) and det(A) = 0 (Exercise
2.10). Invoking Lemma 2.8 we get

det(AB) = 0 = 0·det(B) = det(A)·det(B) ,

and similarly if B is the singular factor.
Otherwise A and B are nonsingular and so it AB, so we can find elementary matrices

such that Em ·. . .·E1A = In×n, which implies A = E−1
1 ·. . .·E−1

m . By repeated application
of Lemma 2.8 we see that

det(A) =
m
∏

i=1

det(E−1
i )

and

det(AB) = det(E−1
m ) · det (E−1

m−1 · . . . · E
−1
1 B )

= . . .
∏

i det(E−1
i ) · det(B) = det(A) · det(B). !

2.13. Exercise. If A ∈ M(n, K) is invertible then det(A−1) = det(A)−1. If A, B ∈
M(n, K) and S is an invertible matrix such that B = SAS−1 then det(B) = det(A).

Thus det(A) is a “similarity invariant”– it has constant value for all matrices in a similar-
ity class. We will encounter several other similarity invariants of matrices in the following
discussion.

2.14. Exercise. Explain why rank(A) of an n × n matrix is a similarity invariant.

2.15. Exercise. An n × n matrix A is said to be orthogonal if AtA = In×n. Prove
that

1. AtA = I ⇒ AAt = I, so A is orthogonal ⇔ At = A−1 (two-sided inverse).

2. det(A) = ±1 for any orthogonal matrix, over any field.
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Hint: Recall the comments posted in (32). For (1.) it suffices to show AtA = I ⇒ the
operator LA : Kn → Kn is one-to-one.

2.16. Exercise. Use Type II and III row operations to find the determinant of the
following matrix.

A =

⎛

⎜

⎜

⎝

1 2 1 2
2 1 2 1
1 3 3 1
1 3 3 4

⎞

⎟

⎟

⎠

2.17. Exercise. Use Type II and III row operations to show that det(A) = −16i for
the following matrix in M(4, C), where i =

√
−1.

0

B

B

@

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

1

C

C

A

2.18. Exercise. Apply the Gauss-Seidel algorithm to find A−1 for the matrices

(i) A =

⎛

⎝

1 3 1
2 8 4
0 4 7

⎞

⎠ (ii) A =

⎛

⎝

1 3 2
2 4 1
0 4 2

⎞

⎠

2.19. Exercise. Consider the set of matrices Hn of the form

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 x1 · · · xn z
0 1 yn

. . .
...

1 y1

0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with xi, yj , z in K. When K = R this is the n-dimensional Heisenberg group of quantum
mechanics.

1. Prove that Hn is closed under matrix product.

2. Prove that the inverse A−1 of any matrix in Hn is also in Hn (compute it explicitly
in terms of the parameters xi, yj , z).

Since the identity matrix is also in Hn, that means Hn is a matrix group contained in
GL(n + 2, K).

2.20. Exercise. For n ≥ 2 let

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0
1 0 1
0 1 0 1

. . .
1 0 1

0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Use row operations to

1. Calculate det(A).

2. Calculate the inverse A−1 if it exists.

81



Note: The outcome will depend on whether n is even or odd.

2.21. Exercise. Given a diagonal matrix D = diag(λ1, . . . , λn) with distinct entries,
find an invertible matrix S such that conjugation D .→ SDS−1 interchanges the ith and
jth diagonal entries (i ̸= j):

S

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

λ1 0
. . .

λi

. . .

λj

. . .
0 λn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

S
−1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

λ1 0
. . .

λj

. . .

λi

. . .
0 λn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Hint: Think row and column operations on D. Note that if EII is a Type II elementary
matrix then E−1 = E = Et, and right multiplication by Et effects the corresponding
column operation.

Determinants of Matrices vs Determinants of Linear Operators.
A determinant det(T ) can be unambiguously assigned to any linear operator T : V → V
on a finite dimensional space. Given a basis X = {ei} in V , we get a matrix [T ]XX and
could entertain the idea of assigning

(34) det(T ) = det([T ]XX) ,

but for this to make sense the outcome must be independent of the choice of basis. This
actually works. If Y is any other basis we know there is an invertible matrix S = [idV]YX

such that [T ]YY = S [T ]XXS−1, and then by Theorem 2.12

det ([T ]YY) = det(S) · det ([T ]XX) · det(S−1)

= det(SS−1)·det ([T ]XX) = det(In×n) · det ([T ]XX)
= det ([T ]XX)

as required. Thus the determinant (34) of a linear operator is well defined.
The trace Tr(T ) is another well-defined attribute of an operator T : V → V when

dim(V ) < ∞. Recall Exercise 4.19 of Chapter II: For n × n matrices the trace Tr(A) =
∑n

i=1 Aii is a linear operator Tr : M(n, K) → K such that Tr(In×n) = n and Tr(AB) =
Tr(BA). If X, Y are bases for V , we get

Tr([T ]YY) = Tr(S [T ]XXS−1) = Tr(S−1S · [T ]XX) = Tr([T ]XX)

Thus

(35) Tr(T ) = Tr([T ]XX)

determines a well-defined trace on operators. Note, however, that if T : V → W with
V ̸= W , there is no natural way to assign a “determinant” or “trace” to T , even if
dim(V ) = dim(W ). The problem is philosophical: there is no natural way to say that a
basis X in V is the “same as” another basis Y in W .

The operator trace has the same algebraic properties as the matrix trace.

2.22. Exercise. If A, B : V → V are linear operators on a finite dimensional space V ,
prove that
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1. Tr : HomK(V, V ) → K is a K-linear map between vector spaces:

Tr(A + B) = Tr(A) + Tr(B) and Tr(λ · A) = λ · Tr(A)

2. Tr(idV ) = n·dim(V );

3. Tr(AB) = Tr(BA) (composition product of operators);

4. If S is an invertible operator and B = SAS−1 then Tr(B) = Tr(A).

The last statement shows that Tr is a similarity invariant for linear operators; so is the
determinant det.

2.23. Exercise. If T : V → V is a linear operator on a finite dimensional space prove
that

Tr(T ) = Tr(T t) and det(T ) = det(T t)

Note: A conceptual issue arises here: T maps V → V while the transpose T t : V ∗ → V ∗

acts on an entirely different vector space! But if you take a basis X in V and the dual
basis X∗ in V ∗ the definitions (34) and (35) still have something useful to say.

2.24. Exercise. Let P : V → V be a projection (associated with some direct sum
decomposition V = E ⊕ F ) that projects vectors onto E along F . Prove that Tr(P ) =
dimK(E).
Hint: Pick a suitable basis compatible with the decomposition E ⊕ F .

Expansion by Minors and Cramer’s Rule. The following result allows a
recursive computation of an n × n determinant once we can compute (n − 1) × (n − 1)
determinants. Although it is useful for determining algebraic properties of determinants,
and is handy for small matrices, it is prohibitively expensive in computing time for
large n. This expansion is keyed to a particular row (or column) of A and involves an
(n − 1) × (n − 1) determinant (the “minors” of the title) for each row entry.

2.25. Theorem (Cramer’s Rule). For any row 1 ≤ i ≤ n, we can write

det(A) =
n

∑

j=1

(−1)i+jaij ·det (Ãij)

where Ãij = the (n− 1)× (n− 1) submatrix obtained by deleting Rowi and Colj from A.
Similarly, for any column 1 ≤ j ≤ n we have

det(A) =
n

∑

i=1

(−1)i+jaij ·det (Ãij)

Proof: Since det(A) = det(At), it is enough to prove the result for expansion along a
row. Each term in the sum

det(A) =
∑

σ∈Sn

sgn(σ) · (a1σ(1) · . . . · anσ(n))

contains just one term from Rowi(A) = (ai1, . . . , ain), so by gathering together terms we
may write

det(A) = ai1a
∗

i1 + . . . + aina∗

in

in which a∗

ij involves no entry from Rowi(A).
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Our task is to show a∗

ij = (−1)i+j det (Ãij). One approach is to reduce to the case
when i = j = n. In that special situation, we get

anna∗

nn =
∑

σ∈S′

n

sgn(σ) · (a1σ(1) · . . . · anσ(n))

where S′
n ⊆ Sn is the subgroup of permutations such that σ(n) = n (the subgroup that

“stabilizes” the element “n” in X = {1, 2, . . . , n}).

2.26. Exercise. If σ̃ ∈ Sn−1 is regarded as the permutation σ ∈ S′
n ⊆ Sn such that

σ(n) = n and σ(k) = σ̃(k) for 1 ≤ k ≤ n − 1, show that sgn(σ̃) = sgn(σ).

In view of this the sum
∑

σ∈S′

n

(...) becomes
∑

σ̃∈Sn−1
(...). Thus

a∗

nn = (−1)n+n det (Ãnn) = det(Ann)

Now consider any i and j. Interchange Rowi(A) with successive adjacent rows (“flips”)
until it is at the bottom. This does not affect the value of det(Ãij) because the relative
positions of the other rows and columns are not affected; however each flip switched the
sign of aij in the formula, and there are n − i such changes. Similarly we may move
Colj(A) to the nth column, incurring n − j sign changes. Thus

a∗

ij = (−1)n−i+n−j det(Ãij) = (−1)i+j det(Ãij)

for all i and j, proving the theorem. !

We post the following formula for A−1 without proof (cf Schaums, p 267-68). If matrix
A ∈ M(n, K) is invertible we have

(36) A−1 =
1

det(A)
· (Cof(A))

t

where the n × n “cofactor matrix” Cof(A) has i, j entry = (−1)i+jÃij , and Ãij =
determinant of the (n − 1) × (n − 1) submatrix obtained by deleting (Rowi) and (Colj)
from A.
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